PCM1702 20Bit 16 倍スーパーサンプリング DAC 基板

SS1702-000

取扱説明書

2023/4/16 Rev.0.02 SLDJ 合同会社 肥後信嗣

本製品はデジタルデータを3次自然スプライン関数によって補間する、PCM1702 用 20Bit16 倍スー パーサンプリング D/A コンバータ基板です。

スーパーサンプリング D/A コンバータの詳細につきましては、添付資料の電気学会論文及び、トラ ンジスタ技術 2018 年 10 月号をご参照ください。

1. 準備

①電源投入

AC 電源入力 J2 に AC 電源を接続し、電源を供給します。LED D19(緑)と LED D20(青)が 点灯することを確認します。もしいずれかが点灯しない、点灯しても暗いなどの症状がある場合は 直ちに電源を切り、製作マニュアルに従って実装、配線に間違いがないかよく確認してください。

②Amanero COMBO384 の装着

U11 ピンソケットに Amanero COMBO384 を装着し、2 本のスペーサを介してネジで固定しま す。基板の保護と絶縁のため、付属のプラスチックネジとスペーサーをお使いください。(プラスチ ックネジは壊れやすいので締め付けトルクにご注意ください。)次に Amanero COMBO384 の USB コネクタとパソコン(音源)を接続します。

パソコン側の音声フォーマットにより、表1に示すように LED D5~D8 が点灯します。

	D5	D6	D7	D8
44.1kHz	点灯			
48kHz		点灯		
88.2kHz	点灯	点灯		
96kHz			点灯	
176.4kHz	点灯		点灯	
192kHz		点灯	点灯	
352.8kHz	点灯	点灯	点灯	
384kHz				点灯

表 1. 音声フォーマットの LED 表示

 (注)本 SSDAC 基板は、44.1kHz~96kHz まで 対応しています。176.4kHz 以上は対応して いません。 ③パソコンの再生フォーマット(既定の形式)の設定

再生するファイルの音声フォーマットに合わせて、パソコンの再生フォーマット(規定の形式)を 設定します。

例) CD からリッピングした WAV ファイル (44.1 k Hz 16bit) の場合

【windows10の設定例】

```
コントロールパネル→サウンド→再生タブ
→デジタル出力 (Amanero Technologies USB Driver X.X.XX) ※1 をダブルクリック
→詳細タブ→既定の形式
「2 チャンネル、24 ビット、44100Hz (スタジオの音質)」
または
「2 チャンネル、32 ビット、44100Hz (スタジオの音質)」
に設定 (※2)
→OK
```

- ※1 SSDAC でご使用の DD コンバータ
- ※2 windows10 においては、「既定の形式」を16 ビット設定時にノイズが発生することが 確認されましたので、16 ビットの設定は使用しないでください。
- 2. 基本動作
 - ・DIP スイッチ SW1 の初期設定

SW1 を図1に示すようにすべて OFF 側に設定します。

図 1. DIP スイッチ SW1 の初期設定

この状態で、16 倍スーパーサンプリングデータを PCM1702 で D/A 変換した出力が RCA ピンジ ャック J7 (Lch)、J8 (Rch) に出力されます。このときそれぞれの逆位相の信号が J9 (Lch)、J10 (Rch) に出力されます。SW1 の各ビットの機能は次のとおりです。

- ・SW1-1:NOS (スーパーサンプリングなしの生データ再生) とスーパーサンプリングモードを 切り替えます。
- ・SW1-2:未使用
- ・SW1-3:ステレオ、モノラルを切り替えます。
- ・SW1-4:ミュートスイッチです。
- 3. LED の説明

基板上の各 LED の表示内容を表 2 に示します。

Amanero COMBO384 が出力する信号フォーマットを示す LED については、表1に示したとおりです。

LED 番号	名称	説明
D1	VBUS	Amaneroから3.3Vが供給されているとき点灯
D15	SSMODE	Super Samplingモードのとき点灯
D16	-	予備(未使用)
D17	Clip L	Lch演算出力がクリップしたとき点灯
D18	Clip R	Rch演算出力がクリップしたとき点灯
D19	+12V	+12V電源確認用
D20	-12V	-12V電源確認用

表 2. SSDAC の状態を示す LED

4. 各コネクタの信号説明

 J1 Amanero COMBO384 信号モニタ出力(オプション) Amanero COMBO384 から出力される各信号のモニタ出力です。出力信号は表 3 に示すとおりで す。

1	MUTE	Amanero	MUTE信号
2	PLUG	Amanero	PLUG信号
3	3.3V	Amanero	3.3V
4	GND	Amanero	GND
5	MCLK	Amanero	MCLK信号
6	LRCK	Amanero	LRCK信号
7	BCLK	Amanero	BCLK信号
8	SDATA	Amanero	SDATA信号

表 3. J1 Amanero 出力モニタ(オプション)

J2 AC 電源入力コネクタ

電源トランスより AC 電源を入力します。表4に示します。

表 4. AC 電源入力

1	ACin1a
2	ACin1b
3	NC
4	ACin2a
5	ACin2b

- ③ J3、J16 テスト用ピンヘッダ
 この2つは、テスト用端子です。通常は使用しません。
 各信号名を表5、表6に示します。
- ④ J4 FPGA ダウンロードケーブル (USB Blaster) 接続コネクタ
 FPGA のプログラム時に USB Blaster を接続します。ピン配置を表7に示します。

1	-5V
2	+5V
3	GNDD
4	GNDD
5	FPGA_135P
6	FPGA_124P
7	FPGA_132P
8	FPGA_127P
9	FPGA_131P
10	FPGA_130P

表 5. J3 テスト用ピンヘッダ 表 6. J16 テスト用ピンヘッダ

1	+12VA
2	-12VA
3	GNDA
4	GNDA
5	NC
6	NC
7	NC
8	NC

表7. FPGA ダウンロードケーブル (USB Blaster) 接続コネクタ

1	ТСК
2	GND
3	TDO
4	VCC
5	TMS
6	NC
7	NC
8	NC
9	TDI
10	GND

⑤ J6 LED 信号出力コネクタ(オプション)

LED D15~D18 への信号を出力します。LED 信号を外部に引き出す場合に使用します。電流制 限抵抗は入っていませんのでご注意ください。ピン配置を表8に示します。

表 8. LED 信号出力コネクタ

1	3.3V	
2	SSMODE	Super SamplingモードのときH
3	-	予備(未使用)
4	Clip L	Lch演算出力がクリップしたときH
5	Clip R	Rch演算出力がクリップしたときH
6	GND	