無帰還 DC 電流駆動ヘッドホンアンプ HPAC-000

製作マニュアル

2021/10/21 Rev.0.01b SLDJ 合同会社 肥後信嗣

ヘッドホン、イヤホンの個性を引き出す電流駆動アンプを、無帰還 DC で構成し性能の限界に挑戦したヘッドホンアンプです。電源は±3.5V~±5V のバッテリー駆動です。保護回路およびミューティング回路を搭載し、ヘッドホン保護時はヘッドホン出力を短絡、電源を OFF する方式をとっているため、リレー接点による音質劣化の心配はありません。

1. 部品収集

部品表にしたがって部品を集めます。 表1に示すとおり、半導体は10組のペア取りと熱結合が必要です。 そのなかで特に注意すべきこと、および備考は次のとおりです。

- ① Q5,Q6,Q17,Q18 はダイオードとして使用しているのでペア取りは必ずしも必須ではないが、 可能であれば Q7,Q8,Q19,Q20 とそろえる。
- ② Q9,Q10,Q11,Q12 および Q21,Q22,Q23,Q24 はすべて HFE をそろえることが望ましいが、 困難であればカレントミラーペアである Q9 と Q11、Q10 と Q12、Q21 と Q23、Q22 と Q24 のペア取りを優先する。
- ③ Q25 以降の 2SC2240 および 2SA970 はペア取りや HFE 選別は不要なので、上記ペア取りで 余ったものを使う。

※参考のため作者が実際に使ったペア取り部品の定数を回路図上に記載し、表1のパラメータ(参考)に記載します。

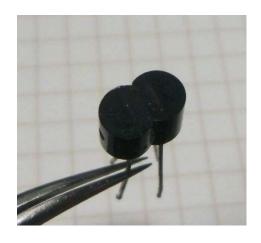


写真 1. トランジスタの熱結合 接着剤は 2 液混合タイプのエポキシ系を使用。

表 1. 半導体のペア取りと熱結合

リファレンス		部品名	パラメータ	備考	
Lch	Rch	中四石	(参考)	1	
Q1	Q13	2SK117GR	ldss=5.5mA	ペア取りおよび熱結合	
Q2	Q14	251(11701)	1055-5.5IIIA	ldss=4~6mA程度	
Q3	Q15	2SK117BL	ldss=9.1mA	ペア取り	
Q4	Q16	ZSKIITDL	1055-3.1111A	ldss=8~12mA程度	
Q5	Q17	2SC2240		できればQ7,Q8,Q19,Q20とHFEを	
40	41	2002210	HFE=280	そろえる <mark>(※1</mark>)	
Q6	Q18	2SA970		HFE=200~300程度	
Q7	Q19	2SC2240	HFE=280	ペア取り	
Q8	Q20	2SA970	HFE=ZOU	HFE=200~300程度	
Q9	Q21	2SA1020	HFE=240	ペア取りおよび熱結合	
Q11	Q23	Z3A1020	111 L-240	HFE=200~250程度	
Q10	Q22	2SC2655	HFE=250	ペア取りおよび熱結合	
Q12	Q24	2302000	111 L=230	HFE=200~250程度	

※1 Q5とQ7、Q6とQ8、Q17とQ19、Q18とQ20はそれぞれ熱結合

2. 熱結合

基板に実装する前に必要な部品を熱結合しておきます。

熱結合はすべて TO-92 タイプのパッケージを向かい合わせに接着します (写真 1)。接着剤は 2 液 混合タイプのエポキシ接着剤を使用します。最近ではダイソーでも入手可能です。

接着後はデバイスの見分けがつかなくなってしまいますので、あらかじめラベルを貼った箱や小袋 を用意して、接着したら分類しておくなどの工夫をしてください。

- ① Q1 と Q2 および Q13 と Q14 (2SK117GR) をそれぞれ熱結合。
- ② Q5 と Q7 および Q17 と Q19 (2SC2240) をそれぞれ熱結合。
- ③ Q6 と Q8 および Q18 と Q20 (2SA970) をそれぞれ熱結合。
- ③ Q9 と Q11 および Q21 と Q23 (2SA1020) をそれぞれ熱結合。
- ④ Q10 と Q12 および Q22 と Q24 (2SC2655) をそれぞれ熱結合。

3. 部品実装

部品表にしたがって、部品を実装します。

- ・タクトスイッチ SW1、SW2 は必要に応じたボタン高さのものを選んで購入してください。
- ・電池用コネクタ J3、J4 (2.5mm ピッチ) は必要に応じて実装してください。

- ・抵抗は横実装と縦実装があります(図1、図2)。
- ・ダイオードはすべて縦実装です。(図3)
- ・基板への部品実装は原則的に背の低いものから順に行います。

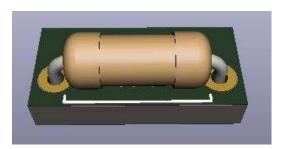


図1. 抵抗の横実装

図2. 抵抗の縦実装

図3. ダイオードの実装

- ① Q26,Q36 (AO3400) を実装し、はんだ付け。
- ② Q27 (AO3415) を実装し、はんだ付け。
- ③ C3,C4,C9,C10 (チップ 1 μ F PMLCAP) を実装し、はんだ付け。
- ④ 横実装の抵抗を挿入、はんだ付け。
- ⑤ ダイオード D1~D12 を挿入、はんだ付け。
- ⑥ 半固定抵抗 RV2、RV3 を挿入、はんだ付け。
- ⑦ 縦実装の抵抗を挿入、はんだ付け。
- ⑧ 電解コンデンサ C15 を挿入、はんだ付け。
- ⑨ トランジスタ、FET を挿入、はんだ付け。
- ⑩ LED D13、D14を挿入、はんだ付け。(高さは必要に応じて調整してください。)
- ① タクト SW SW1、SW2 を挿入、はんだ付け。
- ② ステレオジャック J1、J2 を実装、はんだ付け。
- ③ ボリューム RV1 を実装、はんだ付け。
- ⑭ 残りの OS コンデンサおよび電解コンデンサを挿入、はんだ付け。

すべての部品が実装されると、写真2~4のようになります。

写真 2. 実装完成①

写真 3. 実装完成②

写真 4. 実装完成③

※部品実装についての注意点

- ・R43、R44 は LED 点灯用です。使用する LED に応じて明るさが最適になるように、必要に応じて値を変更してください。
- ・R41、R42 (3.3k) は無負荷時 (ヘッドホンが装着されていない場合) に出力が大きく変動する ことを抑える目的で挿入していますが、実装すると電流駆動アンプとしての性能が若干下がり ます。通常は実装する必要はありません。
- ・C1、C2、C7、C8 は位相補償用のコンデンサです。半導体に指定部品を使用する場合は不要です。指定以外の部品を使用して、方形波出力波形にオーバーシュートが見られる場合は、適当な値(10~200PF 程度)のフィルムコンデンサかディップマイカコンデンサを実装して、方形波の波形が正常になるように補償してください。

4. 電源の接続と操作方法、および調整

部品の間違いがないか、はんだ付けの漏れや不良、ブリッジがないかよく確認してから、次の手順で 電源を接続し調整を行います。

なお本機には SW1、SW2 の 2 つのタクトスイッチが搭載されており、電源の ON は SW1 を長押し、電源の OFF は SW2 を押すことで行います。

- ① 入力ボリューム RV1 をゼロ(左に回し切り)
- ② 半固定抵抗 RV2、RV3 をセンターにセット。
- ③ I2 の L、R 出力それぞれに、対 GND で 30Ω程度のダミー抵抗を接続。
- ④ 図4のいずれかの接続で、電源(電池) $\pm 3.5 \sim \pm 5 \text{V}$ を接続。(通常はリチウムイオン電池 (3.8V) をプラス側とマイナス側に各1個使用します。)

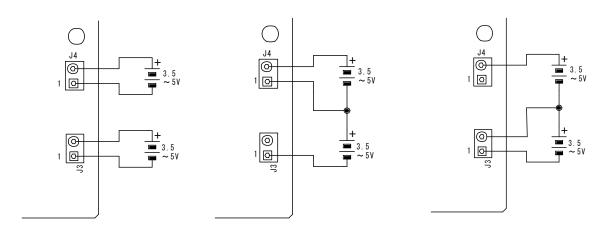


図 4. 電源(電池)の接続

- ⑤SW1 を 2 秒程度長押しし、LED D13、D14 が点灯し、リレーの動作音がしたら SW1 を離し、2 つの LED が点灯し続けること(電源 ON 状態)を確認する。
- ⑥SW2 を押すとリレーの動作音とともに電源が切れて、2つの LED が消灯することを確認する。
- ⑦再び⑤の手順で電源を ON し、RV2 を左に回しきったときに電源が OFF することを確認。(保護回

路の動作確認)

- (8)RV2 をセンターに戻し、再び(5)の手順で電源を ON し、RV2 を右に回しきったときに電源が OFF することを確認。(保護回路の動作確認)
- ⑨RV2をセンターに戻し、上記⑦⑧と同じ確認をRV3左右回しきりで行って、保護回路の動作を確認。
- ⑩RV2、RV3 をセンターに戻し、再び⑤の手順で電源を ON し、J2 に付けた L、R チャンネルそれぞれのダミー抵抗の両端電圧が 0 になるように、RV2、RV3 を調整する。30 分ほど時間をかけて、追って調整すること。
- ①R8、R17の両端電圧がそれぞれおよそ 200 mV になっていることを確認する。おおむね $180 \text{mV} \sim 215$ mV 程度になっていれば OK。 (アイドリング電流およそ 60 mA)

【以上がうまくいかない場合】

- ◎基本的に部品間違いか、ハンダ不良かのいずれかが疑われますので、もう一度よく確認した上で、下 記のとおりご確認ください。
 - ・SW1 を押しているあいだはふたつの LED が点灯し、リレーも動作するが、SW1 を離すと電源が切れる
 - →J2 の出力(L、R 両方)にダミー抵抗が接続されているか確認してください。
 - →RV2、RV3がセンターになっているか確認してください。
 - →SW1 を押してリレーの動作音がした後に J2 の L、R 出力がともに 150mV 以下になっているか確認してください。また、RV2、RV3 の位置によってこの値が変わるかどうか確認してください。L、R 出力電圧が 150mV 以下に調整できない場合や、RV2、RV3 によって変化がない場合は、部品違いかハンダ不良が疑われます。
 - →L、R 出力がともに 150mV 以下にもかかわらず電源 ON 状態にならない場合も部品違いかハンダ不良が疑われます。
 - ・2つのLEDのうちいずれかまたは両方が点灯しない、または暗い
 - →電源が正常に供給されていないか、回路のショートまたは部品違いかハンダ不良が疑われます。
 - ・R8 または R17 の両端電圧が大きい、または小さい(アイドリング電流が 60mA から大きく外れる)
 - \rightarrow R4、R5(Lch)またはR13、R14(Rch)(すべて 33 Ω)で調整します。これらの抵抗値を増やすとアイドリング電流は減少し、抵抗値を減らすとアイドリング電流は増加します。ただしこれらが27~39 Ω 程度の範囲で調整できない場合は部品違いかハンダ不良が疑われます。

5. その他注意事項

・入力ボリューム RV1 のシャフトおよびその周辺の金属部から外来ノイズが入ることがあります。 特にボリュームのツマミに金属製のものを使用したり、ツマミを付けずに直接ボリュームに触れ るなどした場合にノイズが入ります。このノイズを防止するには、ボリュームのシャフトのネジ部 からアース線を回路の GND に接続してください。

- ・R41、R42 はヘッドホンを接続していない場合に出力が暴れることを防止する目的で実装できますが、通常は不要です。
- ・ヘッドホン未接続時は、負荷インピーダンスが無限大となり、オフセット電圧が大きく出るため保 護回路が働いて電源が OFF になります。

6. 諸特性

①歪率雑音特性(THD+N)

L、R チャンネル負荷 33 Ω 、100 Ω 時の歪率雑音特性を図 5 \sim 図 8 に示す。



図 5. Lch 33Ω負荷 THD+N(%)

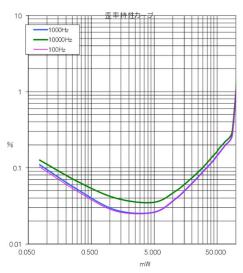


図 6. Rch 33Ω負荷 THD+N(%)

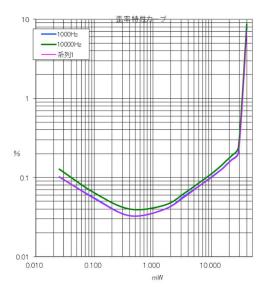


図 7. Lch 100Ω負荷 THD+N(%)

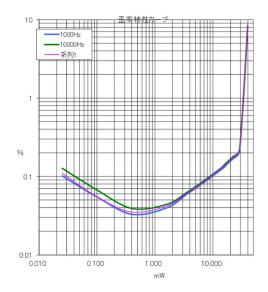


図 8. Rch 100Ω負荷 THD+N(%)

以上のとおり、THD+N(%)はボトムで0.03%程度、実用域ではおおむね0.1%以下となった。

②方形波応答

L、R チャンネル負荷 33 Ω 、100 Ω 時の 10kHz、100kHz 方形波出力波形を図 9 \sim 図 16 に示す。

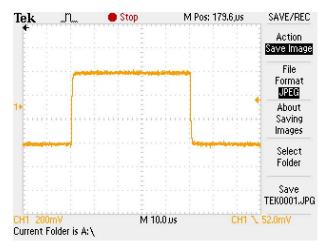


図 9. Lch33Ω負荷 10kHz 方形波出力

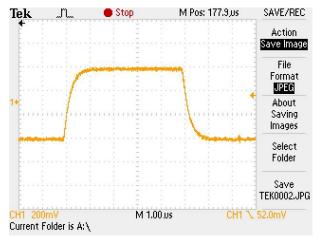


図 10. Lch33Ω負荷 100kHz 方形波出力

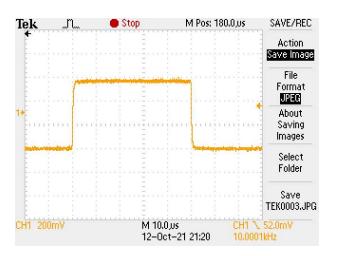


図 11. Rch33Ω負荷 10kHz 方形波出力

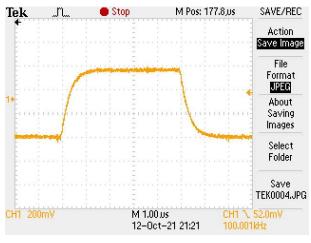


図 12. Rch33Ω負荷 100kHz 方形波出力

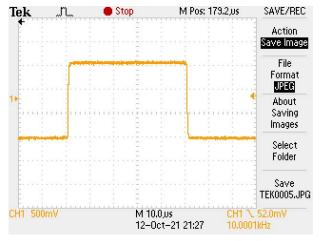


図 13. Lch100 Ω 負荷 10kHz 方形波出力

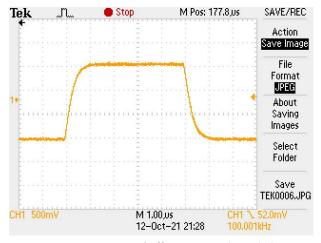


図 14. Lch100Ω負荷 100kHz 方形波出力

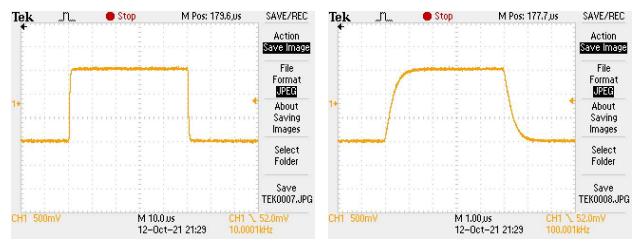


図 15. Rch100 Ω 負荷 10kHz 方形波出力

図 16. Rch100 Ω 負荷 100kHz 方形波出力

以上のとおり、いずれもオーバーシュートは発生しないので位相補償は不要。

③周波数ゲイン特性

L、R チャンネル負荷 33Ω 、 100Ω 時の周波数ゲイン特性を図 17~図 20 に示す。

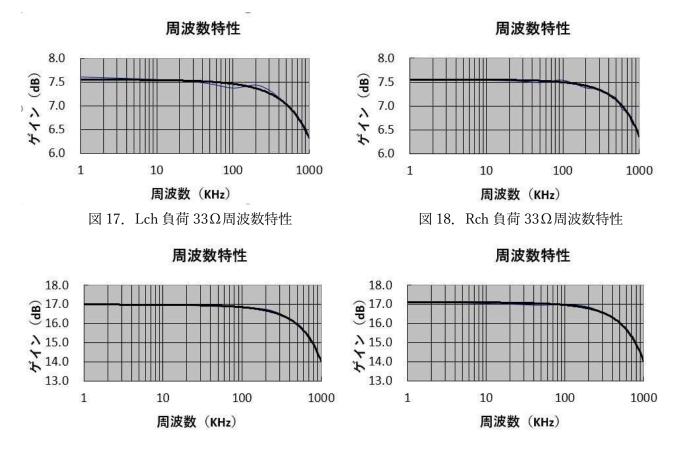


図 19. Lch 負荷 100 Ω 周波数特性

図 20. Rch 負荷 100 Ω 周波数特性

以上のとおりいずれも-3dB条件で周波数帯域が1MHzとなった。

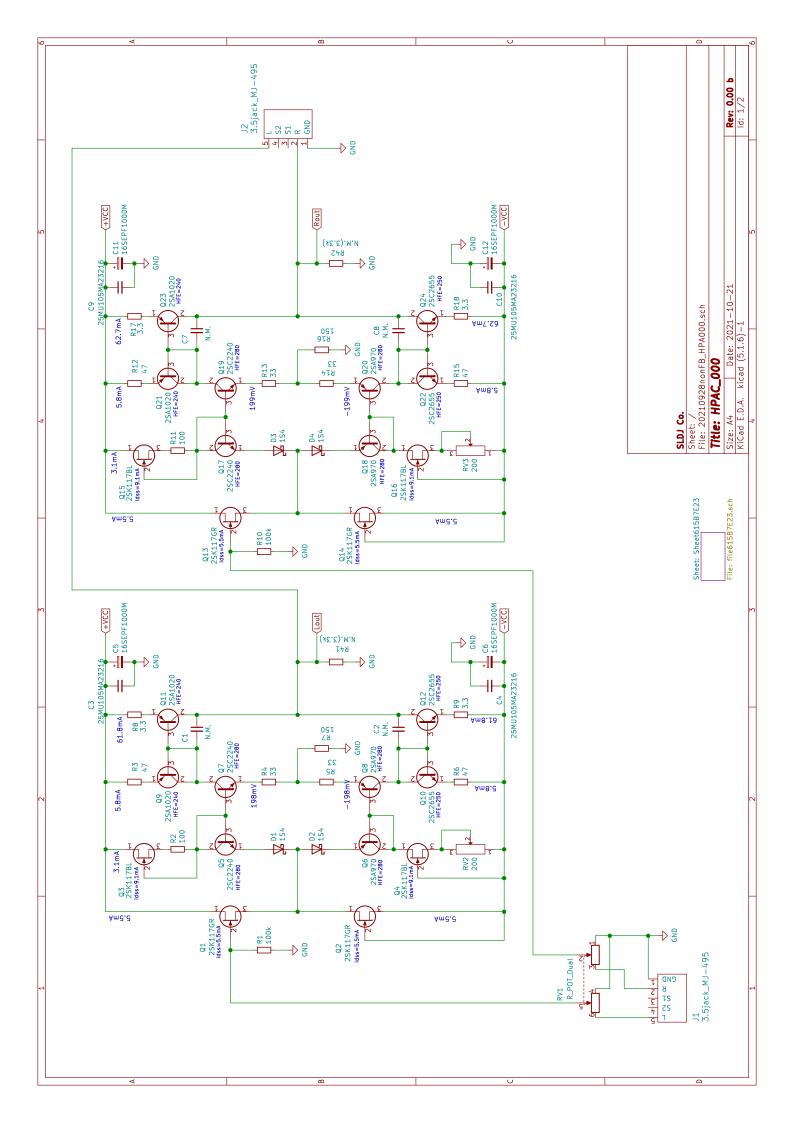
④出力インピーダンス

L、R チャンネルの出力インピーダンスの測定結果を表 2、表 3 に示す。 負荷 $1k\Omega$ 、 $2k\Omega$ での ON/OFF 方で測定した。

表 2. Lch 出力インピーダンス

周波数	1kΩ負荷	2kΩ負荷	出力インピーダンス
100Hz	557mV	855mV	2.3k Ω
1 k Hz	615mV	1000 m V	3.3k Ω
10kHz	623mV	1040 m V	4k Ω

表 3. Rch 出力インピーダンス


周波数	1kΩ負荷	2kΩ負荷	出力インピーダンス
100Hz	557mV	852mV	2.3k Ω
1 k Hz	625mV	1020mV	3.4k Ω
10kHz	610mV	1020mV	4.1kΩ

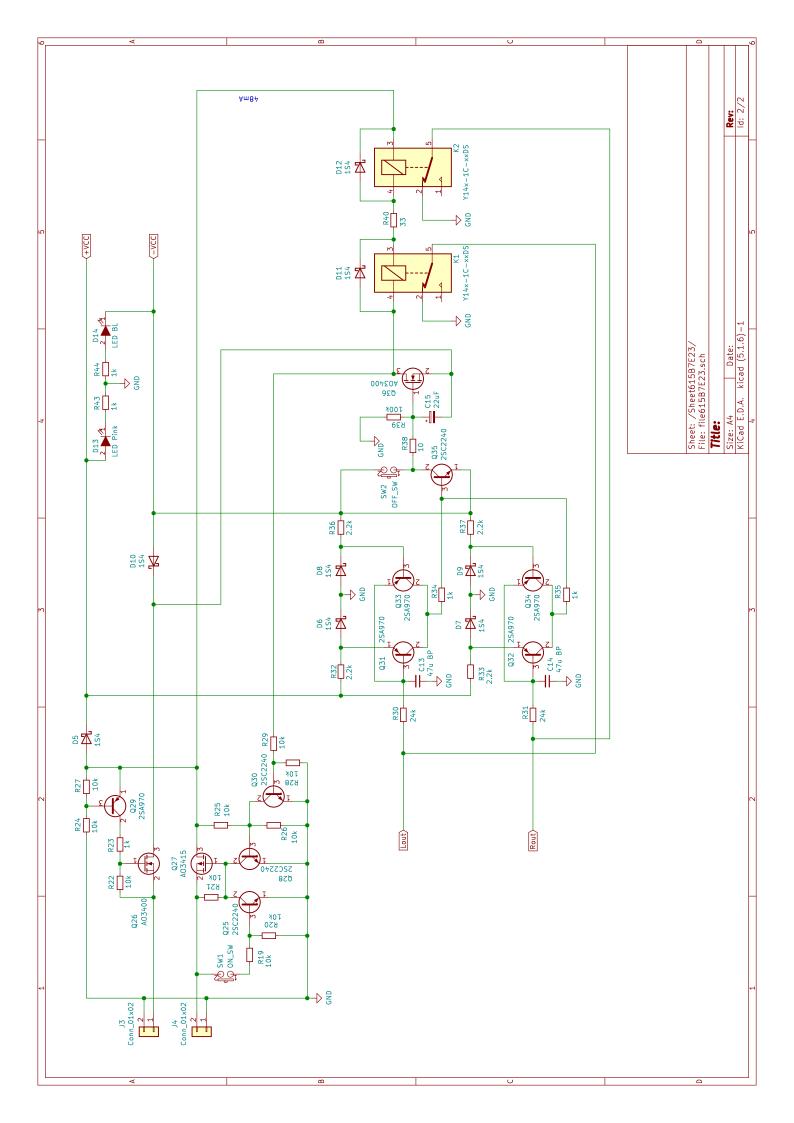
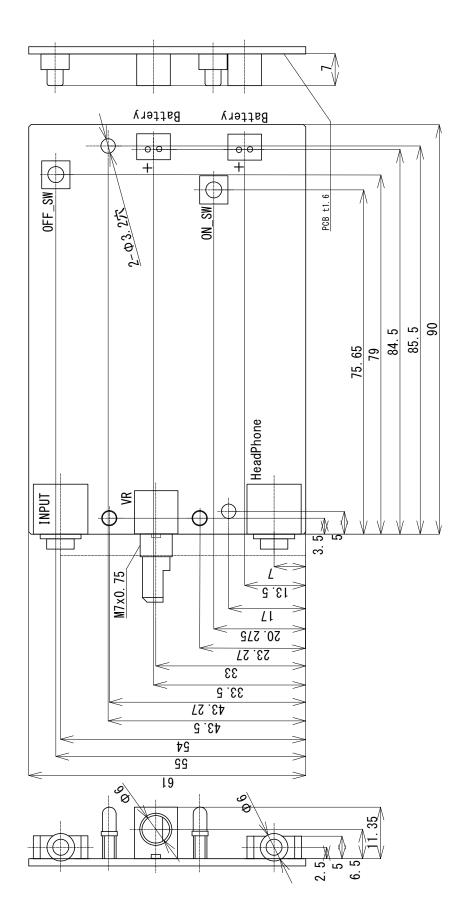

7. 主要諸元

表4に主要諸元を示す。

表 4. 主要諸元

電源電圧	±3.5V~±5V		
消費電流	約200mA		
最大出力	50mW(33Ω負荷) 20mW(100Ω負荷)		
ゲイン	72mS		
周波数特性(0,-3dB)	0~1MHz(負荷33Ω~100Ω)		
出力インピーダンス	2.3kΩ@100Hz、3.3kΩ@1KHz 4kΩ@10kHz		
出力オフセット電圧	50mV以下(入力GNDショート、負荷33Ω)		
プロテクト動作電圧	± 150 m V		

HPAC-000 基板実装部品表


※緑色はたて実装を示す

番号	種類	型名・値	型番	主な入手先	備考
Q1	JFET	2SK117GR		若松通商	
Q2	JFET	2SK117GR		若松通商	
Q13	JFET	2SK117GR		若松通商	
Q14	JFET	2SK117GR		若松通商	
Q3	JFET	2SK117BL		若松通商	
Q4	JFET	2SK117BL		若松通商	
Q15	JFET	2SK117BL		若松通商	
Q16	JFET	2SK117BL		若松通商	
Q26	MOSFET (Nch)	AO3400		秋月電子通商	
Q36	MOSFET (Nch)	AO3400		秋月電子通商	
Q27	MOSFET (Pch)	AO3415		秋月電子通商	
Q5	TR(NPN)	2SC2240GR		秋月電子通商	
Q7	TR(NPN)	2SC2240GR		秋月電子通商	
Q17	TR(NPN)	2SC2240GR		秋月電子通商	
Q19	TR(NPN)	2SC2240GR		秋月電子通商	
Q25	TR(NPN)	2SC2240GR		秋月電子通商	
Q28	TR(NPN)	2SC2240GR		秋月電子通商	
Q30	TR(NPN)	2SC2240GR		秋月電子通商	
Q35	TR(NPN)	2SC2240GR		秋月電子通商	
Q6	TR(PNP)	2SA970GR		秋月電子通商	
Q8	TR(PNP)	2SA970GR		秋月電子通商	
Q18	TR(PNP)	2SA970GR		秋月電子通商	
Q20	TR(PNP)	2SA970GR		秋月電子通商	
Q29	TR(PNP)	2SA970GR		秋月電子通商	
Q31	TR(PNP)	2SA970GR		秋月電子通商	
Q32	TR(PNP)	2SA970GR		秋月電子通商	
Q33	TR(PNP)	2SA970GR		秋月電子通商	
Q34	TR(PNP)	2SA970GR		秋月電子通商	
Q9	TR(PNP)	2SA1020		秋月電子通商	
Q11	TR(PNP)	2SA1020		秋月電子通商	
Q21	TR(PNP)	2SA1020		秋月電子通商	
Q23	TR(PNP)	2SA1020		秋月電子通商	
Q10	TR(NPN)	2SC2655		秋月電子通商	
Q12	TR(NPN)	2SC2655		秋月電子通商	
Q22	TR(NPN)	2SC2655		秋月電子通商	
Q24	TR(NPN)	2SC2655		秋月電子通商	
D1	ダイオード	184		秋月電子通商	
D2	ダイオード	184		秋月電子通商	
D3	ダイオード	1\$4		秋月電子通商	
D4	ダイオード	184		秋月電子通商	
D5	ダイオード	184		秋月電子通商	
D6	ダイオード	184		秋月電子通商	
D7	ダイオード	184		秋月電子通商	
D8	ダイオード	184		秋月電子通商	
D9	ダイオード	184		秋月電子通商	
D10	ダイオード	184		秋月電子通商	
D11	ダイオード	184		秋月電子通商	
D12	ダイオード	1S4		秋月電子通商	

D13	LED	Φ3ピンク			
D14	LED	Φ3青			
R8		3.3	RLC25FY	—————————— 千石電商	
R9	金属皮膜抵抗1/4W	3.3	RLC25FY	千石電商	
R17		3.3	RLC25FY	———————— 千石電商	
R18	金属皮膜抵抗1/4W	3.3	RLC25FY	——————————— 千石電商	
R38	金属皮膜抵抗1/4W	10	RLC25FY	千石電商	
R4	金属皮膜抵抗1/4W	33	RLC25FY	千石電商	
R5	金属皮膜抵抗1/4W	33	RLC25FY	千石電商	
R13	金属皮膜抵抗1/4W	33	RLC25FY	千石電商	
R14	金属皮膜抵抗1/4W	33	RLC25FY	千石電商	
R40	金属皮膜抵抗1/4W	33	RLC25FY	千石電商	
R3	金属皮膜抵抗1/4W	47	RLC25FY	千石電商	
R6	金属皮膜抵抗1/4W	47	RLC25FY	千石電商	
R12	金属皮膜抵抗1/4W	47	RLC25FY	千石電商	
R15	金属皮膜抵抗1/4W	47	RLC25FY	千石電商	
R2	金属皮膜抵抗1/4W	100	RLC25FY	千石電商	
R11	金属皮膜抵抗1/4W	100	RLC25FY	千石電商	
R7	金属皮膜抵抗1/4W	150	RLC25FY	千石電商	
R16	金属皮膜抵抗1/4W	150	RLC25FY	千石電商	
R43	金属皮膜抵抗1/4W	1k	RLC25FY	千石電商	LED ピンク
R44	金属皮膜抵抗1/4W	1k	RLC25FY	千石電商	LED 青
R23	金属皮膜抵抗1/4W	1k	RLC25FY	千石電商	
R34	金属皮膜抵抗1/4W	1k	RLC25FY	千石電商	
R35	金属皮膜抵抗1/4W	1k	RLC25FY	千石電商	
R32	金属皮膜抵抗1/4W	2.2k	RLC25FY	千石電商	Protect Sens
R33	金属皮膜抵抗1/4W	2.2k	RLC25FY	千石電商	Protect Sens
R36	金属皮膜抵抗1/4W	2.2k	RLC25FY	千石電商	Protect Sens
R37	金属皮膜抵抗1/4W	2.2k	RLC25FY	千石電商	Protect Sens
R41	金属皮膜抵抗1/4W	N.M.(3.3k)	RLC25FY	千石電商	
R42	金属皮膜抵抗1/4W	N.M.(3.3k)	RLC25FY	千石電商	
R19	金属皮膜抵抗1/4W	10k	RLC25FY	千石電商	
R20	金属皮膜抵抗1/4W	10k	RLC25FY	千石電商	
R21	金属皮膜抵抗1/4W	10k	RLC25FY	千石電商	
R22	金属皮膜抵抗1/4W	10k	RLC25FY	千石電商	
R24	金属皮膜抵抗1/4W	10k	RLC25FY	千石電商	
R25	金属皮膜抵抗1/4W	10k	RLC25FY	千石電商	
R26	金属皮膜抵抗1/4W	10k	RLC25FY	千石電商	
R27	金属皮膜抵抗1/4W	10k	RLC25FY	千石電商	
R28	金属皮膜抵抗1/4W	10k	RLC25FY	千石電商	
R29	金属皮膜抵抗1/4W	10k	RLC25FY	千石電商	
R30	金属皮膜抵抗1/4W	24k	RLC25FY	千石電商	
R31	金属皮膜抵抗1/4W	24k	RLC25FY	千石電商	
R1	金属皮膜抵抗1/4W	100k	RLC25FY	千石電商	
R10	金属皮膜抵抗1/4W	100k	RLC25FY	千石電商	
R39	金属皮膜抵抗1/4W	100k	RLC25FY	千石電商	
C3	PMLCAP	1 μ F/25V	25MU105MA23216	秋月電子通商	
C4	PMLCAP	1 μ F/25V	25MU105MA23216	秋月電子通商	
C9	PMLCAP	1 μ F/25V	25MU105MA23216	秋月電子通商	
C10	PMLCAP	1 μ F/25V	25MU105MA23216	秋月電子通商	

C15	電界コンデンサ	22uF/16V	16MH722MEFC5X7	秋月電子通商	
C13	電界コンデンサ	47u/25V BP	UES1E470MPM	秋月電子通商	
C14	電界コンデンサ	47u/25V BP	UES1E470MPM	秋月電子通商	
C5	OSコンデンサ	1000uF/16V	16SEPF1000M	秋月電子通商	
C6	OSコンデンサ	1000uF/16V	16SEPF1000M	秋月電子通商	
C11	OSコンデンサ	1000uF/16V	16SEPF1000M	秋月電子通商	
C12	OSコンデンサ	1000uF/16V	16SEPF1000M	秋月電子通商	
J1	Φ3.5ステレオジャック	MJ-495 (またはPJ-307)		秋月電子通商	(aitendo)
J2	Φ3.5ステレオジャック	MJ-495 (またはPJ-307)		秋月電子通商	(aitendo)
J3	2.5ピッチ2ピンコネクタ	B2B-XH-A(LF)(SN)		秋月電子通商	
J4	2.5ピッチ2ピンコネクタ	B2B-XH-A(LF)(SN)		秋月電子通商	
K1	リレー 3V	Y14H-1C-3DS		秋月電子通商	
K2	リレー 3V	Y14H-1C-3DS		秋月電子通商	
RV1	100kΩ A 2連VR	RK0971220-F15-C0-A104		秋月電子通商	
RV2	200Ω 半固定VR	GF063P B201K		秋月電子通商	
RV3	200Ω 半固定VR	GF063P B201K		秋月電子通商	
SW1	タクトSW	TS-0606-F-N		秋月電子通商	
SW2	タクトSW	TS-0606-F-N		秋月電子通商	
C1		N.M.			
C2		N.M.			
C7		N.M.			
C8		N.M.			

(注記) 部品は同等代替品に変更する場合があります。

【注記】ケミコンとトランジスタの最大高さ約13mm は記載していません。